skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Hsien Lien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study investigates the electrical and structural properties of metal–oxide–semiconductor capacitors (MOSCAPs) with in situ metal-organic chemical vapor deposition-grown Al2O3 dielectrics deposited at varying temperatures on (010) β-Ga2O3 and β-(AlxGa1−x)2O3 films with different Al compositions. The Al2O3/β-Ga2O3 MOSCAPs exhibited a strong dependence of electrical properties on Al2O3 deposition temperature. At 900 °C, reduced voltage hysteresis (∼0.3 V) with improved reverse breakdown voltage (74.5 V) was observed, corresponding to breakdown fields of 5.01 MV/cm in Al2O3 and 4.11 MV/cm in β-Ga2O3 under reverse bias. In contrast, 650 °C deposition temperature resulted in higher voltage hysteresis (∼3.44 V) and lower reverse breakdown voltage (38.8 V) with breakdown fields of 3.69 and 2.87 MV/cm in Al2O3 and β-Ga2O3, respectively, but exhibited impressive forward breakdown field, increasing from 5.62 MV/cm at 900 °C to 7.25 MV/cm at 650 °C. High-resolution scanning transmission electron microscopy (STEM) revealed improved crystallinity and sharper interfaces at 900 °C, contributing to enhanced reverse breakdown performance. For Al2O3/β-(AlxGa1−x)2O3 MOSCAPs, increasing Al composition (x) from 5.5% to 9.2% reduced net carrier concentration and improved reverse breakdown field contributions from 2.55 to 2.90 MV/cm in β-(AlxGa1−x)2O3 and 2.41 to 3.13 MV/cm in Al2O3. The electric field in Al2O3 dielectric under forward bias breakdown also improved from 5.0 to 5.4 MV/cm as Al composition increased from 5.5% to 9.2%. The STEM imaging confirmed the compositional homogeneity and excellent stoichiometry of both Al2O3 and β-(AlxGa1−x)2O3 layers. These findings demonstrate the robust electrical performance, high breakdown fields, and excellent structural quality of Al2O3/β-Ga2O3 and Al2O3/β-(AlxGa1−x)2O3 MOSCAPs, highlighting their potential for high-power electronic applications. 
    more » « less
    Free, publicly-accessible full text available May 7, 2026
  2. Abstract (AlxGa1–x)2O3 is an ultrawide‐bandgap semiconductor with a high critical electric field for next‐generation high‐power transistors and deep‐ultraviolet photodetectors. While (010)‐(AlxGa1–x)2O3 films have been studied, the recent availability of (100), (01)‐Ga2O3 substrates have developed interest in (100), (01)‐(AlxGa1–x)2O3 films. In this work, an investigation of microscopic and spectroscopic characteristics of (100), (01), (010)–(AlxGa1–x)2O3 films is conducted. A combination of scanning transmission electron microscopy, atom probe tomography (APT), and first‐principle calculations (DFT) is performed. The findings reveal consistent in‐plane chemical homogeneity in lower aluminum content (x = 0.2) films. However, higher aluminum content (x = 0.5), showed inhomogeneity in (100), (010)–(AlxGa1–x)2O3 films attributed to their spectroscopic properties. The study expanded APT's capabilities to determine Ga─O and Al─O bond lengths by mapping their ion‐pair separations in detector space. The change in ion‐pair separations is consistent with varying orientations, irrespective of aluminum content. DFT also demonstrated a similar trend, concluding that Ga─O and Al─O bonding energy has an inverse relationship with their bond length as crystallographic orientations vary. This systematic study of growth orientation dependence of (AlxGa1–x)2O3 films’ microscopic and spectroscopic properties will guide the development of new (100) and (01)‐(AlxGa1–x)2O3 along with existing (010)–(AlxGa1–x)2O3 films. 
    more » « less
  3. We report the detailed mechanism behind the β to γ phase transformation in Sn-doped and Si-implanted Ga2O3 that we determined based on the direct observation of the atomic scale structure using scanning transmission electron microscopy (STEM). Quantitative analysis of the STEM images revealed that the high concentration of impurity atoms favored the formation of interstitial–divacancy complexes, which then leads to the secondary relaxation that creates additional interstitial atoms and cation vacancies, resulting in a local structure that closely resembles γ-Ga2O3. We explain the mechanism of how the impurity atoms facilitate the transformation, as well as the detailed sequence of the local γ phase transformation. The findings here offer an insight on how the lattice respond to the external stimuli, such as doping and strain, and transform into different structures, which is important for advancing Ga2O3 but also a variety of low symmetry crystals and oxides with multiple polymorphs. 
    more » « less
  4. Phase pure β-(Al x Ga 1−x ) 2 O 3 thin films are grown on (001) oriented β-Ga 2 O 3 substrates via metalorganic chemical vapor deposition. By systematically tuning the precursor molar flow rates, the epitaxial growth of coherently strained β-(Al x Ga 1−x ) 2 O 3 films is demonstrated with up to 25% Al compositions as evaluated by high resolution x-ray diffraction. The asymmetrical reciprocal space mapping confirms the growth of coherent β-(Al x Ga 1−x ) 2 O 3 films (x < 25%) on (001) β-Ga 2 O 3 substrates. However, the alloy inhomogeneity with local segregation of Al along the ([Formula: see text]) plane is observed from atomic resolution STEM imaging, resulting in wavy and inhomogeneous interfaces in the β-(Al x Ga 1−x ) 2 O 3 /β-Ga 2 O 3 superlattice structure. Room temperature Raman spectra of β-(Al x Ga 1−x ) 2 O 3 films show similar characteristics peaks as the (001) β-Ga 2 O 3 substrate without obvious Raman shifts for films with different Al compositions. Atom probe tomography was used to investigate the atomic level structural chemistry with increasing Al content in the β-(Al x Ga 1−x ) 2 O 3 films. A monotonous increase in chemical heterogeneity is observed from the in-plane Al/Ga distributions, which was further confirmed via statistical frequency distribution analysis. Although the films exhibit alloy fluctuations, n-type doping demonstrates good electrical properties for films with various Al compositions. The determined valence and conduction band offsets at β-(Al x Ga 1−x ) 2 O 3 /β-Ga 2 O 3 heterojunctions using x-ray photoelectron spectroscopy reveal the formation of type-II (staggered) band alignment. 
    more » « less
  5. The in situ metalorganic chemical vapor deposition (MOCVD) growth of Al 2 O 3 dielectrics on β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films is investigated as a function of crystal orientations and Al compositions of β-(Al x Ga 1−x ) 2 O 3 films. The interface and film qualities of Al 2 O 3 dielectrics are evaluated by high-resolution x-ray diffraction and scanning transmission electron microscopy imaging, which indicate the growth of high-quality amorphous Al 2 O 3 dielectrics with abrupt interfaces on (010), (100), and [Formula: see text] oriented β-(Al x Ga 1−x ) 2 O 3 films. The surface stoichiometries of Al 2 O 3 deposited on all orientations of β-(Al x Ga 1−x ) 2 O 3 are found to be well maintained with a bandgap energy of 6.91 eV as evaluated by high-resolution x-ray photoelectron spectroscopy, which is consistent with the atomic layer deposited (ALD) Al 2 O 3 dielectrics. The evolution of band offsets at both in situ MOCVD and ex situ ALD deposited Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 is determined as a function of Al composition, indicating the influence of the deposition method, orientation, and Al composition of β-(Al x Ga 1−x ) 2 O 3 films on resulting band alignments. Type II band alignments are determined at the MOCVD grown Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 interfaces for the (010) and (100) orientations, whereas type I band alignments with relatively low conduction band offsets are observed along the [Formula: see text] orientation. The results from this study on MOCVD growth and band offsets of amorphous Al 2 O 3 deposited on differently oriented β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films will potentially contribute to the design and fabrication of future high-performance β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 based transistors using MOCVD in situ deposited Al 2 O 3 as a gate dielectric. 
    more » « less
  6. Epitaxial growth of κ-phase Ga 2 O 3 thin films is investigated on c-plane sapphire, GaN- and AlN-on-sapphire, and (100) oriented yttria stabilized zirconia (YSZ) substrates via metalorganic chemical vapor deposition. The structural and surface morphological properties are investigated by comprehensive material characterization. Phase pure κ-Ga 2 O 3 films are successfully grown on GaN-, AlN-on-sapphire, and YSZ substrates through a systematical tuning of growth parameters including the precursor molar flow rates, chamber pressure, and growth temperature, whereas the growth on c-sapphire substrates leads to a mixture of β- and κ-polymorphs of Ga 2 O 3 under the investigated growth conditions. The influence of the crystalline structure, surface morphology, and roughness of κ-Ga 2 O 3 films grown on different substrates are investigated as a function of precursor flow rate. High-resolution scanning transmission electron microscopy imaging of κ-Ga 2 O 3 films reveals abrupt interfaces between the epitaxial film and the sapphire, GaN, and YSZ substrates. The growth of single crystal orthorhombic κ-Ga 2 O 3 films is confirmed by analyzing the scanning transmission electron microscopy nanodiffraction pattern. The chemical composition, surface stoichiometry, and bandgap energies of κ-Ga 2 O 3 thin films grown on different substrates are studied by high-resolution x-ray photoelectron spectroscopy (XPS) measurements. The type-II (staggered) band alignments at three interfaces between κ-Ga 2 O 3 and c-sapphire, AlN, and YSZ substrates are determined by XPS, with an exception of κ-Ga 2 O 3 /GaN interface, which shows type-I (straddling) band alignment. 
    more » « less